Minnesota Dual-Training Pipeline

Competency Model for Information Technology
Occupation: Software Engineer/Developer

Employer- Occupation-Specific Competencies*
Specific

Requirements

Perform unit and integration testing Implement continuous integration
Explore websites and applications Interpret data analysis

Utilize server automation tools Facilitate customer consultation
Conduct software testing Develop software systems
Analyze and design software Apply defensive programming
Troubleshoot bug fixing/de-bugging Collaborate with cross-functional
Perform quality assurance teams

Navigate integrated development

environment

Monitor equipment functioning

Translate technical documents into

actionable work

Industry-Sector Technical Competencies*

Bash Software Service- Object- Data Unified Waterfall
shell analysis, design oriented oriented structures and modeling and
scripting and testing architectures programming algorithms language Agile
Performance

Version Cloud-based | Knowledge of Client/server
engineering control | development encryption architecture

/
A

Industry-Wide Technical Competencies

Programming‘ Logic ‘ Databases ‘

Networks, Software Risk mgmt.,

User and Digital .
telecom, development - . security and
. customer | mediaand | Compliance | . .
wireless and and information

. support | visualization
mobility management assurance

Principles of | Databases
information and
technology | applications

Personal Effectiveness Competencies

Intet:personal . . . L Dependability ALl 7 Lifelong
skills and Integrity Professionalism Initiative L and .
and reliability L learning
teamwork flexibility

Based on: Information Technology Competency Model, Employment and Training Administration, United States
Department of Labor, February 2025. For more detailed information about competency model creation and sources,
visit dli.mn.gov/business/workforce/information-technology.

m B DUAL-TRAINING
PIPELINE
Competency Model for Software Engineer/Developer

Software Engineer/Developer — An individual who is responsible for designing, building, and
testing computer systems that help organizations and equipment work more effectively. Examples
of work include information databases, programs that control robotic systems, cloud and mobile
applications.

*Pipeline recommends the Industry-Sector Technical Competencies as formal training
opportunities (provided through related instruction) and the Occupation-Specific Competencies as
on-the-job (OJT) training opportunities.

Industry-Sector Technical Competencies

Related Instruction for dual training means the organized and systematic form of education
resulting in the enhancement of skills and competencies related to the dual trainee’s current or
intended occupation.

e Bash shell scripting — Knowledge of scripting a UNIX shell or command language.

e Software analysis, design, and testing — Understanding of modeling and its central role in
eliciting, understanding, analyzing, testing, and communicating software requirements,
architecture, and design.

e Programming — Training to create programs by writing “code” in a programming language.

e Service-oriented architectures — Understand the architectural pattern in computer software
design in which application components provide services to other components via a
communications protocol, typically over a network.

e Object-oriented programming — Understand the type of programming in which programmers
define not only the data type of a data structure, but also the types of operations (functions)
that can be applied to the data structure.

e Logic—Training in the part of the program that encodes the real-world business rules that
determine how data can be created, displayed, stored, and changed.

e Databases — Knowledge of implementing data models and database designs to ensure security
and data integrity in database software.

Version control — Understanding of the system that records changes to a file or set of files over
time so that you can recall specific versions later.

Data structures and algorithms — Knowledge of the use of data structures and algorithms in
software programming.

Cloud-based development — Understand the creation and deployment of cloud apps.

Performance engineering — Understanding of the techniques applied during a systems
development life cycle to ensure the non-functional requirements for performance will be met.

Unified modeling language — Understanding of the general-purpose modeling language for
software engineering, designed to provide a standard way to visualize the design of a system.

Knowledge of encryption — Understanding of how encryption functions and how to work with
it within the software development environment.

Client/server architecture — Knowledge of the Client/Server Architecture model and how to
develop software for such a system.

Waterfall and agile — Understand sequential methodologies of waterfall and agile as processes
to complete software development and testing.

Occupation-Specific Competencies

On-the-Job Training is hands-on instruction completed at work to learn the core competencies

necessary to succeed in an occupation. Common types of OJT include job shadowing, mentorship,

cohort-based training, assignment-based project evaluation and discussion-based training.

Perform unit and integration testing — Be able to test various computing scenarios for units
and integration.

Explore websites and applications — Understand the use of globally accessible web pages and
software applications.

Utilize server automation tools — Know how to use applications which automate computing
functions.

Conduct software testing — Understand how to test software’s ability to perform and function
before installation.

Analyze and design — Understand how to review activities and create improvements which help
the transformation of requirement specification into implementation.

Troubleshoot bug fixing/de-bugging — Ability to locate, fix or bypass errors (bugs) in code or
devices.

Perform quality assurance — Know how to use appropriate methods to verify overall quality of
software design and system work.

Navigate integrated development environment — Know how to use the IDE application for
software development.

Monitor equipment functioning — Know how to monitor system in order to review information
to detect or assess problems.

Translate technical documents into actionable work — Understand how to create working
process documents from very technical IT documents.

Implement continuous integration — Know how to merge developer working copies with
shared mainline several times a day.

Interpret data analysis — Understand how to store, retrieve and manipulate data for analysis of
system capabilities and requirements. Also know how to understand the process of cleaning,
transforming, and modeling data to discover useful information for software development
decision-making.

Facilitate customer consultation — Know how to work with internal and external customers to
gather information regarding software requirements and customization.

Develop software systems — Be able to design, develop and modify software systems.

Apply defensive programming — Know how to design model intended to ensure the continuing
function of a piece of software under unforeseen circumstances.

Collaborate with cross-functional teams — Understand the software development role while
working with a cross-functional team.

Updated October 2025

	Competency Model for Software Engineer/Developer
	Industry-Sector Technical Competencies
	Occupation-Specific Competencies

